A fiber-optic transceiver is a device used to send and receive optical information. There are a number of different components on one of these devices, including a light source and an electrical component. The transceiver has two ends, one that an optical cable plugs into and another for connecting an electrical device.
Generally, optical information travels through a fiber in only one direction. A fiber-optic transceiver receives information from one optical fiber and then sends it out through another fiber. This may mean that the information comes in through one side of the transceiver and goes out through the other side. Alternatively, the same fiber-optic cable may send and receive information, either through different fibers in the cable, or at different times.
In addition to sending and receiving information, the fiber-optic transceiver must be capable of converting information from one form to another. In fiber optics, information is sent in the form of pulses of light. These light pulses must be converted into electrical signals in order to be utilized by an electronic device. This conversion happens within a fiber-optic transceiver.
The receiver component of a fiber-optic transceiver is made from a semiconductor. This semiconductor is a photodiode, which is a component that creates an electrical charge when it is exposed to a light source. The transmission component of a fiber-optic transceiver needs to be able to send quick, precise pulses of light. The source of this light is usually a laser or a light-emitting diode (LED). The light source converts electrical information into optical information.
There are a number of different types of fiber-optic transceivers available. They differ in the types of connections as well as in the quality of data transmission. Speed of transmission may also change from device to device.
There are two types of cable that a fiber optic transceiver can connect to. One type is known as multimode fiber cable. This type of cable has a relatively large diameter. The light travels long distances though this type of cable by bouncing or reflecting along the length of the cable. Using this type of cable allows for the use of a transceiver that utilizes less precise LED lights instead of lasers. The second is single mode fiber cable, which is comprised of a thin fiber that sends data over a greater distances than multimode cable is capable of.