A microcontroller is an integrated chip that is often part of an embedded system. It includes a CPU, RAM, ROM, I/O ports, and timers like a standard computer, but because they are designed to execute only a single specific task to control a single system, they are much smaller and simplified so that they can include all the functions required on a single chip. Unlike a microprocessor, which is a general-purpose chip used to create a multi-function computer or device and requires multiple chips to handle various tasks, this device is meant to be more self-contained and independent, and functions as a tiny, dedicated computer.
The great advantage of microcontrollers, as opposed to using larger microprocessors, is that the parts-count and design costs of the item being controlled can be kept to a minimum. They are typically designed using complementary metal oxide semiconductor (CMOS) technology, an efficient fabrication technique that uses less power and is more immune to power spikes than other techniques. There are also multiple architectures used, but the predominant architecture is Complex Instruction Set Computer (CISC), which allows the chip to contain multiple control instructions that can be executed with a single macro instruction. Some use a Reduced Instruction Set Computer (RISC) architecture, which implements fewer instructions, but delivers greater simplicity and lower power consumption.
Early controllers were typically built from logic components and were usually quite large. Later, microprocessors were used, and controllers were able to fit onto a circuit board. Microcontrollers now place all of the needed components onto a single chip. Because they control a single function, some complex devices contain several.
These chips have become common in many areas, and they can be found in home appliances, computer equipment, and instrumentation. They have many industrial uses as well, and they have become a central part of industrial robotics. Because they are usually used to control a single process and execute simple instructions, they do not require significant processing power.
The automotive market has been a major driver of microcontrollers, many of which have been developed for automotive applications. Because they have to withstand harsh environmental conditions, they must be highly reliable and durable. Nonetheless, like their counterparts, the chips used in cars are very inexpensive and are able to deliver powerful features that would otherwise be impossible or too costly to implement.