Nanotechnology in computers provides the need for faster running computer processes at cooler temperatures than traditional, transistor-based computer components. In traditional computing, transistors have used silicon components as an affordable and easily manufactured method to provide smaller and faster computers and electronic gadgets, such as netbooks, smartphones and personal assistant devices. Such powerful gadgets at so small a size produce too much heat, however, reducing the effectiveness, performance and longevity of the silicon components. Nanotechnology in computing solves the heat dilemma by providing improved processor power at cooler temperatures and lighter weights.
Nanotechnology in computers makes use of nanomaterials, tiny molecule-sized machines that process information similarly to the intricate and complex cells in a living organism. Similar to cells, nanomaterials exist on a microscopic level, one nanometer measuring one billionth of a meter, or 1/50,000 the thickness of a human hair. Nanotechnology in computing therefore operates on a minuscule level. Computer manufacturers create long, microscopic strands of carbon atoms, called carbon nanotubes, into tiny transistors that provide twice the processing power of silicon chips, while generating much less heat and lighter components. Additionally, nanotechnology applications offer more efficient performance, thus conserving power and increasing battery life for smaller, portable electronic devices.
The drive for more powerful computers with larger memory at lighter weights and cooler temperatures is responsible for the development of nanotechnology in computers. Besides greater processing power, nanotechnology in computers is providing advanced means of memory storage. The "nanodot," with its ability to condense vast amounts of data in a closely-packed compartment, may eventually replace the hard drive disk. Nanomaterials are generally more expensive than silicon materials, but the rise in demand outweighs the economic concern.
With the development of the transistor after World War II, consumer electronics exploded in popularity. Within four decades, the personal computer was born. As a bulky desktop appliance, there was no immediate need for portability in computers. Fans inside the computer housing, a necessary ingredient to keep transistors and other computer parts cool, gobbled up precious space. Yet since these first computers were stationary, manufacturers saw no real need to shrink the size of the machines.
The development of the cell phone and small computer devices created a need for smarter, more efficient means for carrying out computing processes. The silicon chip answered the call for faster computing. As devices became smaller and consumers requested more powerful technology, the heat produced from silicon components overwhelmed the electronic devices. Computer science developed nanotechnology, or nanotech, to accommodate the need for smaller devices operating at cooler temperatures and faster speeds.